能量依赖速度的二阶谱问题及其完全可积系 |
The Second order Spectral Problem with the |
投稿时间:2008-11-11 |
中文关键词:谱问题 可积系统 对合表示 |
英文关键词:spectral problem integrable problem involutive representation |
基金项目: |
|
摘要点击次数: 1259 |
全文下载次数: 7 |
中文摘要: |
讨论了与能量依赖速度的二阶特征值问题相联系的有限维系统的可积性,利用位势函数与特征函数之间的Bargmann约束,将Lax对非线性化,得到新的有限维Hamilton正则系统,最后借助于Liouville意义下的完全可积系的对合解得到发展方程族的对合表示。 |
英文摘要: |
In this paper, the integrability which a finite dimensional Hamiltonian system is associated with a second order spectral problem with the speed energy is discussed. Moreover, according to the Bargmann constraint between the potential function and the eigenfunction , the Lax pairs are nonlinearized, Then based on the involutive solution of completely integrable Hamiltonian system in Liouville sense, the involutive solutions of the evolution equations are given. |
刘炜,袁书娟,王清.能量依赖速度的二阶谱问题及其完全可积系[J].石家庄铁道大学学报(自然科学版),2009,(1):77-81. |
查看全文 下载PDF阅读器 |
|
关闭 |
|
|
|
|
|