SnO₂/g-C₃N₄ 复合光催化剂的制备及染料降解性能研究

常天龙^{1,2}, 汪楷元^{1,2}, 史迤迈^{1,2}, 王兆东^{1,2}, 王 惠^{1,2}, 吴湘锋^{1,2}

(1. 石家庄铁道大学 材料科学与工程学院,河北 石家庄 050043;2. 交通工程材料河北省重点实验室,河北 石家庄 050043)

摘要:近年来 g-C₃N₄ 基复合光催化材料逐渐成为研究热点。以三聚氰胺(C₃N₃(NH₂)₃)、氯 化铵(NH₄Cl)、五水合四氯化锡(SnCl₄•5H₂O)为主要原料,通过两步法构建了 SnO₂/g-C₃N₄ 复合 光催化体系。分别利用 X 射线衍射仪、透射电子显微镜、紫外/可见分光光度计、电化学工作站等 设备分析了样品的结构、形貌、光响应范围和电化学阻抗等性能;同时利用有机染料罗丹明 B 讨论 了复合材料的光催化活性。研究结果表明,SnO₂ 的含量对复合材料的光催化活性影响明显,随着 SnO₂ 含量的增加,其光催化效率呈现出先增加后降低的现象。当 SnO₂ 的含量为 g-C₃N₄ 的 15wt%时,复合材料的光催化效率达到最优值,可在 20 min 内降解 87.4% 罗丹明 B,比 SnO₂ 和 g-C₃N₄ 纯样分别提高了 1 684%和 51.7%。同时,初步给出了复合材料的协同光催化机理。

关键词:g-C₃N₄;SnO₂;光催化;罗丹明 B

中图分类号: O61 文献标志码: A 文章编号: 2095-0373(2021)01-0120-07

0 引言

近年来,环境污染尤其水体中有机染料污染已经成为世界性的问题,影响着人类的可持续发展。因此,如何实现高效降解水体中的有机物,成为各国学者的热点研究课题。通常而言,对有机染料的处理方法主要包括物理吸附法、生物降解法、化学降解法,这些方法各有其优缺点,但缺点中最主要的问题体现 在降解效率低或者降解过程能耗高^[1-2]。近年来,化学降解法中的半导体光催化技术获得了学者的广泛关注,它是利用半导体光催化材料在太阳光照射下,催化产生氧化能力很强的羟基自由基(•OH)、超氧离子自由基(•O₂)等活性物种,将吸附在半导体表面上的有机染料降解为 H₂O、CO₂ 等无污染物质。由于这种技术节能、降解彻底、二次污染少、反应条件温和,因而成为一种研究意义显著的技术^[3-5]。

在众多的半导体光催材料中,石墨相氮化碳(g-C₃N₄)是一种典型的高分子半导体材料,具有低成本、 良好的稳定性和化学惰性等优点,在可见光下对有机染料具有较高的催化活性,在光催化领域已经被广 泛报道^[6]。然而,在研究过程中,人们发现 g-C₃N₄ 光催化材料也存在一些不足,比如光生电子与空穴寿 命短,光能的利用率低等^[7]。因此,对其取长补短,在利用其优势的同时,结合其他半导体材料,构建综合 性能更加优异的复合光催化剂,则具有良好的科研价值。而二氧化锡(SnO₂)是一种典型的无机半导体光 催化材料,具有良好的光响应活性和化学稳定性,且与 g-C₃N₄ 具有匹配的能带结构,因此,将其与 g-C₃N₄ 复合,则有可能构建光催化活性优于单一组分的复合光催化材料^[8-9]。

基于上述思路,利用两步法将 SnO₂ 纳米颗粒均匀分散于比表面积较大的 g-C₃N₄ 表面,构建出 SnO₂/g-C₃N₄ 复合光催化体系,工艺流程如图 1 所示。利用多种设备分析了复合光催化体系的微观结构

基金项目:河北省自然科学基金(E2019210251,B2019210331)

收稿日期:2019-09-24 责任编辑:车轩玉 DOI:10.13319/j. cnki. sjztddxxbzrb. 20190155

作者简介:常天龙(1995—),男,硕士研究生,研究方向为可见光催化剂。E-mail:243448352@qq.com

常天龙,运横元2定準运1等 $_1$ 名nQ2/g1C3N₄复合光催化剂的制备及染料降解性能研究[J]。石家庄铁道大学学报(自然科学版)/2020.34(1):10-126.

第1期

与宏观光催化性能之间的关系,并初步讨论了其协同光催化机理。相关研究结果可以为光催化体系的构 建和有机染料的去除提供参考借鉴。

十一方水井口注的

1 实验部分

1.1 主要实验原料和设备

表1和表2分别给出了本实验所需的主要药品和设备。

	衣 I 土安头短约而肩甲				
•	药品名称		纯度规格	购买厂家	
-	三聚氰胺($C_3 H_6 N_6$)		分析纯	天津市大茂化学试剂厂	
	五水合四氯化锡(SnCl ₄ ・5H	2O)	分析纯	天津市大茂化学试剂厂	
	氯化铵(NH ₄ Cl)		分析纯	国药集团化学试剂有限公司	
	乙二胺四乙酸(EDTA)		分析纯	国药集团化学试剂有限公司	
	叔丁醇($C_4 H_{10}O$)		分析纯	国药集团化学试剂有限公司	
	对苯醌($C_6H_4O_2$)		分析纯	国药集团化学试剂有限公司	
_	罗丹明 B		分析纯	上海阿拉丁生化科技有限公司	
-	表 2 主要实验设备清单				
	设备名称		设备型号	购买厂家	
	氙灯光源	CEL	-HXUV300 型	北京中教金源科技有限公司	
	电热恒温鼓风干燥箱	DHC	<u>}</u> 型	上海精宏实验设备有限公司	
	超声波细胞粉碎机	JY92	-IIN 型	宁波新芝生物科技有限公司	
	可见分光光度计	N4 🖪	<u>U</u>	上海仪电分析仪器有限公司	
	台式高速离心机	H16	50-W <u>型</u>	巩义市予华仪器有限公司	
	恒温磁力搅拌器	DF-1	01S 型	巩义市予华仪器有限公司	

1.2 SnO₂/g-C₃N₄ 复合材料的制备

1.2.1 SnO₂ 纳米颗粒的制备

将 0.350 6 g SnCl₄ • 5H₂O 倒入 20 mL 去离子水中,以 500 r/min 的速度搅拌 30 min;然后,将溶解 好的无色透明溶液继续倒入 150 mL 内衬聚四氟乙烯的反应釜中并置于鼓风干燥烘箱中,180 \mathbb{C} 下水热 反应 12 h;最后将产品离心洗涤、过滤、60 \mathbb{C} 下干燥至恒重,得到 0.102 3 g 纳米级 SnO₂ 颗粒,产率 为68.2%。

1.2.2 g-C₃N₄纳米片的制备

将 3 g C₃N₃(NH₂)₃、10 g NH₄Cl 以及 30 mL 去离子水充分混合,在 80 ℃水浴条件下搅拌蒸干;将获 得的固体倒入陶瓷坩埚置于马弗炉中煅烧,升温速率保持为 5 ℃/min;4 h 后,将获得的黄色固体研磨成 粉末,升温至 550 ℃继续煅烧 1 h,得到 0.843 2 g g-C₃N₄ 材料,产率为 38.5%。

1.2.3 $SnO_2 / g-C_3 N_4$ 复合光催化剂的制备

将自制的 0.2 g g-C₃N₄和 0.03 g SnO₂ 与 30 mL 去离子水充分搅拌 30 min,30 min 后将其在 80 ℃ (C)1994-2021 Chuna Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.ne 水浴条件下搅拌蒸干。在此基础上,将蒸干后的固体倒入陶瓷坩埚内,置于马弗炉中煅烧,升温速率保持

为 5 C/min_{\circ} 1 h 后,获得 0.7 g SnO₂/g-C₃N₄ 复合光催化材料(SnO₂ 理论质量分数约为 15wt%),产率 为 30.4%。利用相同的工艺流程,通过改变 SnO₂ 的用量制备了理论质量分数分别为 12.5%和 17.5%的 SnO₂/g-C₃N₄ 复合光催化材料。将复合材料的名称分别定义为 SnO₂/g-C₃N₄(12.5%)、SnO₂/g-C₃N₄(15%)和 SnO₂/g-C₃N₄(17.5%)。

1.3 SnO₂/g-C₃N₄复合材料对罗丹明 B 溶液的吸附和光催化降解

以 10 mg/L 的罗丹明 B 稀溶液讨论样品的光催化活性。其具体操作流程如下:取 50 mg 样品放入通 有循环水冷却的夹套烧杯中并加入 100 mL 罗丹明 B 溶液。为了避免吸附对光降解效率的影响,先将样 品在避光条件下搅拌 1 h 使之达到吸附-解吸平衡;然后打开带有紫外光滤光片的 300 W 氙灯光源系统 (>420 nm),每间隔 10 min 取样 4 mL,将溶液置于容积为 5 mL 的离心管中,让其在离心机中充分离心; 吸出上清液后放入紫外-可见分光光度计中,在 554 nm 测定其吸光度,分析其光催化性能。

1.4 样品表征

分别采用 X 射线衍射仪(XRD,型号:Rigaku MiniFlex600,日本)、透射电子显微镜(TEM,型号:JE-OL JEM 2100,日本)、紫外/可见/近红外漫反射光谱(UV-Vis DRS,型号:Hitachi U-4100,日本)、电化学 工作站(EW,型号:CHI760E,中国)对产品的结构、形貌、光学性能和电化学阻抗(EIS)性能进行了表征。

2 结果与讨论

2.1 XRD 分析

图 2 显示的为样品的 XRD 图。从图 2 可以看出,g-C₃N₄ 的特征衍射峰大约在 13.1°和 27.4°,其中 2θ =13.1° 处对应的为(110)晶面,而 27.4°则对应(002)晶面^[10]。 SnO₂ 纯样与 PDF # 41-1445 卡片中特征衍射峰位置相一 致,其中 26.6°、33.8°和 51.7°处的 3 个特征衍射峰分别对 应四方金红石型 SnO₂ 的(110)、(101)和(211)晶面^[11]。 从复合材料 SnO₂/g-C₃N₄(12.5%)、SnO₂/g-C₃N₄(15%) 和 SnO₂/g-C₃N₄(17.5%)可以看出,复合材料都包含了 SnO₂ 和 g-C₃N₄ 2 种物质的特征峰,未发现其他杂质峰, 说明产品的纯度较高。

2.2 光催化降解性能测试分析

图 3 为样品的光催化性能图。从图 3(a)可以看出,

 $SnO_2/g-C_3N_4$ 复合材料的暗吸附整体比 SnO_2 的大。图 3(b)为样品经过 60 min 暗吸附达到平衡后的光降解曲线。从图 3(b)可知,SnO_2 对罗丹明 B 溶液在 20 min 内仅有 11.8%降解效率。这可能是因为其带隙宽度较大,在可见光驱动下无法产生足够的光生电子-空穴,对罗丹明 B 的光催化降解主要是基于染料敏化效应产生的^[12]。g-C_3N_4 在 20 min 内可以降解 57.6%的罗丹明 B。SnO_2/g-C_3N_4 复合材料的光催化活性比 2 种纯样均高,且随着 SnO_2 含量的增加整体呈现出先增加后降低的趋势。当复合材料中 SnO_2 的理论质量分数为 15wt%时,光催化性能达到最优值:20 min 内降解 87.4%的罗丹明 B,与 SnO_2、g-C_3N_4 纯样比,分别提高了 1 684%和 51.7%。图 3(c)显示的为样品对罗丹明 B 溶液降解的一阶动力学模型拟合曲线。具体方法如式(1)所示

$$\ln(C/C_0) = kt \tag{1}$$

式中,k 为一阶速率常数; C_0 为初始罗丹明 B 溶液浓度;C 为不同取样时间 t 的罗丹明 B 溶液浓度^[13]。根 据式(1)可以得出,复合光催化材料的 k 值比 2 种纯样要大,具体为; $SnO_2/g-C_3N_4(15\%)(k=0.104 min^{-1})>SnO_2/g-C_3N_4(17.5\%)(k=0.078 min^{-1})>SnO_2/g-C_3N_4(12.5\%)(k=0.046 min^{-1})>g-C_3N_4$ ($k=0.043 min^{-1}$)>SnO_2($k=0.003 min^{-1}$)。图 3(d)显示的为 SnO_2/g-C_3N_4(15%)在光降解过程中不 (C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.enki.r 同时刻所取溶液的 UV-Vis 吸收光谱图。从图中可以看出,a = 554 mm 处,随时间的增加对罗丹明 B

溶液的特征吸收峰逐渐减小,这说明溶液中罗丹明 B 的浓度不断降低。此结果与图 3(b)相呼应。

图 3 样品的光学催化性能图

2.3 TEM 分析

图 4 显示的为样品的 TEM 和 HR-TEM 图。从图中可以看出, g-C₃N₄ 为 $50 \sim 200 \text{ nm}$ 的纳米片; SnO_2 为 $5\sim10$ nm 的纳米颗粒; $SnO_2/g-C_3N_4(15\%)$ 中 SnO_2 纳米颗粒良好地分布在 $g-C_3N_4$ 的表面,此 结构有利于复合材料光生电子和空穴的传输和分离

(c)SnO₂/g-C₃N₄(15%)样品的 TEM 图 (d)SnO₂/g-C₃N₄ (15%) 样品的 HR-TEM (C)1994-2021 China Academic Journal Electronic Publishing House All rights reserved. http://www.cnki.net 图 4 样品的 TEM 图和 HR-TEM 图

图 5 显示的为样品的 UV-Vis DRS 图以及对应的带隙能宽度图。从图 5(a)中可知,SnO₂ 和 g-C₃N₄ 的吸收边缘分别为 360 nm 和 457 nm;SnO₂/g-C₃N₄(15%)复合光催化剂的吸收边缘与 g-C₃N₄ 相似,在 可见光下呈现较好的光响应性质。通过式(2)可以计算出各个样品的带隙能

$$\alpha hv = A(hv - E_{\sigma})^{n/2} \tag{2}$$

式中, α 为光吸收系数;v 为光频率;A 为比例常数; E_g 为带隙能;n 为半导体材料各自的转变特性,SnO₂ 和 g-C₃N₄ 的 n 值分别为 1 和 4^[14-15]。

图 5 样品的 UV-Vis DRS 图以及对应带隙能宽度图

根据式(2)的计算结果(如图 5(b)所示): SnO₂、g-C₃N₄、SnO₂/g-C₃N₄(15%)的带隙能分别为 2.92、2.41 和 2.50 eV,复合材料在可见光下呈现出良好的光响应性质。

2.5 EIS 分析

通常而言,EIS 可以表征半导体材料电荷转移阻抗的 强弱,奈奎斯特圆弧半径越小,对光生载流子的分离越有 利^[16]。图 6 显示的为 g-C₃N₄、SnO₂ 与 SnO₂/g-C₃N₄ (15%)的 EIS 图。从图 6 可知,SnO₂/g-C₃N₄(15%)样品 的奈奎斯特圆弧半径最小。这说明:与 g-C₃N₄(15%)样品 的奈奎斯特圆弧半径最小。这说明:与 g-C₃N₄(15%)样品 的奈奎斯特圆弧半径最小。这说明:与 g-C₃N₄(15%) 有比,SnO₂/g-C₃N₄(15%) 复合光催化材料的光生电子与 空穴对可以获得更有效的分离,同时可以更快地促进界面 间的电荷转移,拥有更好的宏观光催化性能。此结果与图 3(b)光催化性能结果相符合。

2.6 光催化机理分析

为了探究 SnO₂/g-C₃N₄复合材料对罗丹明 B 的光 催化降解反应机理,向反应体系中分别加入 EDTA(乙 二胺四乙酸)作为光生空穴(h⁺)的抑制剂;TBA(叔丁 醇)作为羟基自由基(•OH)的抑制剂;BQ(对苯醌)作 为超氧自由基(•O₂⁻)的抑制剂。结果如图 7 所示,在 加入 EDTA 和 TBA 的条件下光催化活性基本没有改 变,说明了光生空穴与羟基自由基不是降解过程中的 主要活性物种。而在加入 BQ 后 SnO₂/g-C₃N₄复合材 料的光催化活性明显下降,从而证明了在该反应过程

一〇〇〇994-2021 China Academic Journal Electronic Publishing House. All rights reserved. 上 中超氧自由基为主要氧化活性物质^[17]。 图 7 样品的捕捉实验图

基于以上分析,初步提出 $SnO_2/g-C_3N_4(15\%)$ 复 合光催化剂对罗丹明 B 的协同降解机理,如图 8 所示。 在可见光的照射下, $g-C_3N_4$ 价带(VB)上的电子被激 发到导带(CB),并在 VB 留下 h⁺。同时, SnO_2 中也会 产生部分光生电子-空穴对。在 $g-C_3N_4$ 的 CB 上的电 子会注入 SnO_2 的 CB,并与水中的分子氧反应形成 · O_2^- ,从而实现对罗丹明 B 的光催化降解^[18-20]。

图 8 复合光催化剂对罗丹明 B 的协同降解机理示意图

3 结论

通过两步法构建了对可见光响应良好的 $SnO_2/g-C_3N_4$ 复合光催化体系,对其微观结构与宏观光催化性能进行了较系统的表征,并对其协同光催化降解罗丹明 B 溶液的机理进行了初步探索,获得了如下主要结论:

(1)XRD 分析结果表明,复合光催化剂包含了 SnO₂ 与 g-C₃N₄ 两相,获得的样品中未出现杂质成分。

(2)光催化降解性能测试结果表明,复合光催化材料中 SnO_2 含量明显影响其光催化性能,且随着 SnO_2 含量的增加呈现出先增大后降低的趋势;当 SnO_2 的质量分数为 15wt%时,复合光催化剂获得最优 催化性能。即在 20 min 内降解 87.4%罗丹明 B,比 SnO_2 和 g-C₃N₄ 纯样分别提高了 1 684%和 51.7%。

(3) TEM 分析结果表明,粒径大小 $5 \sim 10 \text{ nm}$ 的 SnO₂ 纳米颗粒良好地分散于 g-C₃N₄ 纳米片表面。

(4) UV-vis DRS 分析结果表明, SnO₂/g-C₃N₄ (15%)的带隙能约为 2.50 eV, 在可见光下具有良好的 响应性质。

(5)EIS 分析表明,SnO₂/g-C₃N₄(15%)相对于 SnO₂ 和 g-C₃N₄ 纯样,其光生电子与空穴对可以更有 效地分离,同时可以更快地进行界面间的电荷转移。

参考文献

- [1]王一瑾,张琛旭,张寒,等.氮化硼纳米片/g-C₃N₄复合光催化剂的制备及其对罗丹明 B 的降解研究[J].石家庄铁道大 学学报(自然科学版),2019,32(1):115-120.
- [2]张琛旭,韩刘春,王奕玮,等. 铁酸镍/石墨烯光催化剂的制备及其对亚甲基蓝的降解研究[J]. 石家庄铁道大学学报(自 然科学版),2019,32(1): 110-114.
- [3]Chengyun Z, Cui L, Chen Z, et al. Semiconductor/boron nitride composites: synthesis, properties, and photocatalysis applications[J]. Applied Catalysis B: Environmental, 2018, 238: 6-18.
- [4]Zhang F, Lu S, Yang P, et al. Synthesis of SiO₂ @AgCl and SiO₂ @Ag₃PO₄ nanocomposites via replacing reaction in situiowards enhanced photocatalysis[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(9): 9794-9799.
- [5]Shalom M, Inal S, Neher D, et al. SiO₂/carbon nitride composite materials: the role of surfaces for enhanced photocatalysis[J]. Catalysis Today, 2014, 225: 185-190.
- [6]Guo Q, Xie Y, Wang X, et al. Characterization of well-crystallized graphitic carbon nitride nanocrystallites via a benzene-thermal route at low temperatures[J]. Chemical Physics Letters, 2003, 380(1): 84-87.
- [7]Dong F, Zhao Z, Xiong T, et al. In situ construction of g-C₃N₄/g-C₃N₄ metal-free heterojunction for enhanced visiblelight photocatalysis[J]. Applied Materials & Interfaces, 2013, 5(21):11392-11401.
- [8]You H, Liu R, Liang C, et al. Gold nanoparticle doped hollow SnO₂ supersymmetric nanostructures for improved photocatalysis[J]. Journal of Materials Chemistry A, 2013, 12(1): 4097-4104.

[9]刘斌.不同微结构 SnO、SnO2 纳米材料的水热法制备及其气敏和光催化性能研究[D].西安:陕西师范大学,2013.

- [10]Hou W, Yan W, Mingbao F, et al. Visible-light-driven removal of tetracycline antibiotics and reclamation of hydrogen energy from natural water matrices and wastewater by polymeric carbon nitride foam[J]. Water Research, 2018, 144: 215-225.
- [11]Prakash K., Senthil K P. Pandiaraj S, et al. Controllable synthesis of SnO₂ photocatalyst with superior photocatalyti (C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.ne activity for the degradation of methylene blue dye solution[J]. Journal of Experimental Nanoscience, 2016, 11(9): 334-

125

340.

- [12]Kuo W S, Chiang Y H, Lai L S. Solar photocatalysis of carbaryl rinsate promoted by dye photosensitization[J]. Dyes and Pigments, 2008, 76(1): 82-87.
- [13]Yang Y, Zeng Z, Zhang C, et al. Construction of iodine vacancy-rich BiOI/Ag@AgI Z-scheme heterojunction photocatalysts for visible-light-driven tetracycline degradation: transformation pathways and mechanism insight[J]. Chemical Engineering Journal, 2018, 349: 808-821.
- [14]Zhuang S, Xu X, Feng B, et al. Photogenerated carriers transfer in dye-graphene-SnO₂ composites for highly efficient visible-light photocatalysis[J]. ACS Applied Materials & Interfaces, 2013, 6(1): 613-621.
- [15]Chen Y, Huang W, He D, et al. Construction of heterostructured g-C₃ N₄/Ag/TiO₂ microspheres with enhanced photocatalysis performance under visible-light irradiation [J]. Acs Applied Materials & Interfaces, 2014, 6 (16): 14405-14414.
- [16]Jian L, Huang J, Han Z, et al. Uniform graphitic carbon nitride nanorod for efficient photocatalytic hydrogen evolution and sustained photoenzymatic catalysis[J]. ACS Applied Materials & Interfaces, 2014, 6(11): 8434-8440.
- [17]毛晨憬,司华艳,邓祺鑫,等. 固态电子介质 Z 型光催化剂 g-C₃ N₄/Ag/Ag₃ PO₄ 的设计合成与光解水性能研究[J]. 石家庄铁道大学学报(自然科学版), 2019, 32(1):104-109.
- [18]Hu J, An W, Wang H, et al. Synthesis of a hierarchical BiOBr nanodots/Bi₂WO₆ p-n heterostructure with enhanced photoinduced electric and photocatalytic degradation performance[J]. RSC Advances, 2016, 6(35): 29554-29562.
- [19]Fan T, Chen C, Tang Z, et al. Hydrothermal synthesis of novel BiFeO₃/BiVO₄ heterojunctions with enhanced photocatalytic activities under visible light irradiation[J]. RSC Advances, 2016, 6(12): 9994-10000.
- [20]Zhang X, Zhang L, Xie T, et al. Low-Temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO₂ heterostructures[J]. The Journal of Physical Chemistry C, 2009, 113(17): 7371-7378.

Preparation and Photocatalytic Degradation Performance of $SnO_2/g-C_3N_4$ Composites for Rhodamine B

Chang Tianlong^{1, 2}, Wang Kaiyuan^{1, 2}, Shi Yimai^{1, 2}, Wang Zhaodong^{1, 2}, Wang Hui^{1, 2}, Wu Xiangfeng^{1, 2}

School of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China;
Hebei Provincial Key Laboratory of Traffic Engineering Materials, Shijiazhuang 050043, China)

Abstract: In recent years, $g-C_3N_4$ based composite photocatalysts have become a hot research topic. $SnO_2/g-C_3N_4$ composite photocatalysts were prepared via a two-step method and using melamine (C_3N_3 (NH_2)₃), ammonium chloride (NH_4Cl) and tin tetrachloride pentahydrate ($SnCl_4 \cdot 5H_2O$) as main raw materials. X-ray diffractometer, transmission electron microscope, ultraviolet/visible spectrophotometer and electrochemical workstation were used to analyze the structure, morphology, optical response range and electrochemical impedance of the samples. The photocatalytic activity of the as-prepared composites was discussed by degrading organic dye of rhodamine B. The experimental results show that the amount of SnO_2 in the as-developed composites has a significant effect on their photocatalytic performance. With the usage of SnO_2 increasing, the photocatalytic performance of the composite photocatalysts increase firstly and then decrease. When the theoretical mass fraction of SnO_2 to $g-C_3N_4$ is 15 wt%, the corresponding photocatalytic degradation efficiency of the as-prepared composites reaches the maximum of 87.4% within 20 min. Composite samples increases by 1 684% and 51.7% over pure SnO_2 and $g-C_3N_4$, respectively. Moreover, the possible-synergistic-photocatalytic mechanism of the as-prepared samples has also been proposed.

Key words: $g-C_3 N_4$; SnO_2 ; photocatalysis; rhodamine B

(C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net